Search results for "Polymeric film"
showing 7 items of 7 documents
SWEET IONIC LIQUIDS BASED MATERIALS FOR ENVIRONMENTAL APPLICATIONS
Control of biofilm formation by poly-ethylene-co-vinyl acetate films incorporating nisin.
2010
The aim of this study was to evaluate the effect of poly-ethylene-co-vinyl acetate (EVA) films incorporating different concentrations (0.1%, 0.5% and 1%) of nisin on the biofilm-forming ability of Listeria monocytogenes ATCC 7644, Staphylococcus aureus 815 and Staphylococ-cus epidermidis ATCC 35984. Nisin was incorporated into two grades of EVA (EVA14 and EVA28) in the melt during a common film-blowing operation. The efficacy of EVA/nisin films was evaluated by biofilm biomass measurements and Live/Dead staining in combination with fluorescence microscopy. In order to evaluate whether the nisin incorporation could modify the film surface properties, contact angle measurements and scanning e…
Combining carvacrol and nisin in biodegradable films for antibacterial packaging applications
2021
Abstract In this work, the feasibility of antibacterial biopolymeric films containing carvacrol (CRV) and a nisin commercial formulation (Nis) for potential food packaging applications was investigated. As polymer matrix, a commercial biodegradable polymer formulation of Mater-Bi (MB) was chosen due to its significant food packaging applications. CRV and Nis were chosen due to their well-established antibacterial properties and their potential synergistic effect. MB/CRV, MB/Nis, and MB/CRV/Nis systems were produced by melt mixing and compression molding. The mechanical properties of the films were evaluated by tensile tests. Differential scanning calorimetry was assessed aiming at investiga…
Ferrocene-quinoxaline Y-shaped chromophores as fascinating second-order NLO building blocks for long lasting highly active SHG polymeric films
2016
The first example of a Y-shaped ferrocene quinoxaline derivative with a surprisingly high and stable second harmonic generation (SHG) response in composite polymeric films is reported. The interesting quadratic hyperpolarizability values of different substituted Y-shaped chromophores are also investigated in solution by the EFISH technique.
Photooxidation and Stabilization of Photooxidized Polyethylene and of its Monopolymer Blends
2003
The increasing use of products from recycled polymers, or from blends with recycled polymers exposed to the outdoors, implies the need for good weathering resistance. This is particularly important when the recycled material comes, in turn, from products exposed during their lifetime to the sun. In this case the presence of C=O groups in the macromolecular chains strongly increases the photooxidative degradation kinetics of these secondary materials. In this work the change of the photooxidative degradation of blends of virgin and photooxidized polyethylene was evaluated as a function of the C=O content present in the material. As expected, the presence of the C=O groups strongly increases …
Development and characterization of essential oil component-based polymer films: a potential approach to reduce bacterial biofilm
2013
The development of new polymeric materials aimed to control the bacterial biofilm appears to be an important practical approach. The goal of the present study was to prepare and characterize poly(ethylene-co-vinyl acetate) copolymer (EVA) films containing citronellol, eugenol, and linalool and evaluate their efficiency on growth and biofilm formation of Listeria monocytogenes, Staphylococcus aureus, Staphylococcus epidermidis, Escherichia coli, and Pseudomonas aeruginosa in monospecies and dual species. The results showed that the addition of oil components influenced the elastic modulus (15 % decrease), the tensile stress (30 % decrease), the elongation at break (10 % increase), and the co…
Study on carvacrol and cinnamaldehyde polymeric films: mechanical properties, release kinetics and antibacterial and antibiofilm activities.
2012
Polyethylene-co-vinylacetate (EVA) films with different concentrations (3.5 wt% and 7 wt%) of essential oil constituents, carvacrol or cinnamaldehyde, were prepared and characterized by mechanical, antibacterial and antibiofilm properties. The incorporation of the compounds into copolymer films affected their elastic modulus, tensile stress and elongation at break. Carvacrol and cinnamaldehyde act as plasticizers which reduce the intermolecular forces of polymer chains, thus improving the flexibility and extensibility of the film. The analysis of the surface characteristics demonstrated that essential oil constituents lowered the contact angle values without causing any remarkable variation…